
Neon - cloud-native storage
backend for PostgreSQL

Heikki Linnakangas <heikki@neon.tech>

What is Neon?

- Startup
- founded March 2021

- New storage system for PostgreSQL
- Open source

- Cloud service
- psql -h pg.neon.tech
- In beta, invite code “pgconfeu”

What is Neon?

- Storage and compute are separated
- Single writer, multiple readers
- Multi-tenant storage
- Single-tenant compute

- runs in Kubernetes containers / VMs
- Cheap copy-on-write branching and timetravel query

Traditional setup

PostgreSQL

Local SSD

Traditional setup in the cloud

Cloud
Storage

S3, Google,
Wasabi etc

PostgreSQL

Local SSD

Backups &
WAL archive

Traditional setup in the cloud

PostgreSQL
primary

PostgreSQL
replica

Local SSD

Local SSD

Cloud
Storage

S3, Google,
Wasabi etc

Backups &
WAL archive

Neon architecture

Storage and Compute are separated

SafekeepersPageservers

Cloud storage

PostgreSQL

WAL

WAL

Compute = PostgreSQL

- no persistent data
- runs in a container or VM
- starts up in 4 seconds

Storage = Neon storage system

- shared

Why?

- Compute can be completely shut down, and started quickly
- No restore from backup
- No WAL recovery
- Serverless!

- Same storage can be shared by multiple read-only nodes
- Scale independently
- Cloud storage is cheap

Storage and Compute are separated

SafekeepersPageservers

Cloud storage

PostgreSQL

WAL

WAL

PostgreSQL:

- streams WAL to the safekeepers
- reads pages from pageservers
- write() is a no-op
- local disk only for temporary files, sorting etc

Best platform to run PostgreSQL

We try to minimize changes to PostgreSQL:

- No changes to planner or executor
- Support all extensions, tools
- Support all PostgreSQL index types
- PostgreSQL handles MVCC

Replace low-level storage, close to where read() & write() happens

- Goal is to get all changes into PostgreSQL

What did you need to change in PostgreSQL?

Most code is in an extension. Core changes
include:

- Make smgr API extendable
- Startup without crash recovery
- WAL-log command ID
- Track last-written LSN
- Cache relation sizes
- Prefetching sequential scans

https://github.com/neondatabase/neon/blob/main
/docs/core_changes.md

https://github.com/neondatabase/neon/blob/main/docs/core_changes.md
https://github.com/neondatabase/neon/blob/main/docs/core_changes.md

Write path

PostgreSQL streams the WAL to the
safekeepers

- Three running safekeepers
- Consensus algorithm based on Paxos
- Ensures durability of recent

transactions
- WAL is stored on local SSDs

SafekeepersPageservers

Cloud storage

PostgreSQL

WAL

WAL

Write path: Pageservers

- Digests the PostgreSQL WAL
- Re-orders and processes it into

immutable files
- Uploads files to cloud storage
- Local SSDs for caching

SafekeepersPageservers

Cloud storage

PostgreSQL

WAL

WAL

Durability

- Recent transactions (= recent WAL)
are made durable in safekeepers

- Older WAL is uploaded to cloud
storage, in processed format

- Pageservers are disposable

SafekeepersPageservers

Cloud storage

PostgreSQL

WAL

WAL

Read path: Pageservers

GetPage(Rel id, Block #, LSN)

- Replays WAL to reconstruct pages, on
demand

- Can reconstruct any page at any point
in time

SafekeepersPageservers

Cloud storage

PostgreSQL

WAL

WAL

Control plane and proxy

- Control plane starts and stops
compute nodes

- Provide web user interface and
user-facing API for creating
databases, branches etc.

- Proxy to accept and
authenticate user connections SafekeepersPageservers

Cloud storage

PostgreSQL

WAL

WAL

PostgreSQLPostgreSQLPostgreSQL

Proxy

Control
plane

Branching

- Want to try how an index would affect query plans?
- Want to run a long-running query?
- Want to have a fresh copy of your production database for testing?

Create a branch! They are copy-on-write and cheap

Branching

Branching replaces backups, WAL archive and Point-in-time Restore

- Instead of a backup schedule, configure retention period

Within the retention period, you can:

- Create a branch
- Timetravel
- Bisect, when was this row updated?

Traditional Point-In-Time Recovery

- Take daily backup
- and archive the WAL

To restore:

- Restore last backup before the point-in-time
- Replay all the log Database

Backup

W
A
L

W
A
L

W
A
L

W
A
L

W
A
L

time

Database
Backup

Neon does this at page granularity

WAL contains a mix of:

- full page images of pages, and
- incremental WAL records.

To reconstruct a page version:

- Find the last image of the page, and
- Replay all the WAL records on top of it

To make this perform:

- Reorder and index the WAL
- Materialize and store additional page images

Current status

- Mostly works
- We are learning how to operate a cloud service
- Focused on performance, autoscaling
- Just rebased over PostgreSQL v15

Thank you!

Q & A

https://github.com/neondatabase/neon/

Try it: psql -h pg.neon.tech
Invite code: pgconfeu

Feedback: heikki@neon.tech

https://github.com/neondatabase/neon/
mailto:heikki.linnakangas@iki.fi

